Accuracy of strain measurement systems on a non-isotropic material and its uncertainty on finite element analysis

Author:

Baldassarre Alessandro1ORCID,Ocampo Juan2,Martinez Marcias1,Rans Calvin3

Affiliation:

1. Department of Mechanical and Aeronautical Engineering, Clarkson University, Potsdam, NY, USA

2. Department of Mechanical Engineering, St. Mary’s University, San Antonio, TX, USA

3. Faculty of Aerospace Engineering, Delft University of Technology, Delft, The Netherlands

Abstract

The application of strain gauges as recommended by the ASTM standards provides accurate strain measurements in isotropic materials. However, their use in composite materials becomes more challenging due to their anisotropic nature. In this study, we hypothesized that the use of the distributed sensing system and the three-dimensional digital image correlation, which can average strain along a line and surface, respectively, may account for strain variability in composite materials. This study shows an investigation on the mechanical properties of unidirectional, cross-ply, and angle-ply carbon-epoxy specimens using strain gauges, distributed sensing system, and digital image correlation. The Bhattacharyya distance method was used to provide a preliminary evaluation of the closeness of the three different measurement techniques while the B-basis statistical method was used to analyze the experimental data in order to obtain a more conservative and reliable material parameter compared to the conventional averaged value, recommended by ASTM standards. Finally, a finite element model was created in Ansys Workbench™ as a means of evaluating the implication of a single point strain gauges measurement, versus a line or a surface strain measurement. The finite element analysis investigation was performed at a laminae level using the measured experimental elastic modulus and at a lamina–lamina level in which the elastic modulus of the unidirectional case was used as input in all the laminate configurations. The former analysis showed good agreement between the finite element analysis and all the strain measurement systems with an averaged percentage difference below 5%. The latter analysis showed a higher discrepancy in the measured percentage difference. A comparison between the finite element analysis and the strain gauges measurements showed an overall percentage difference between the range of 10% and 26%. Distributed sensing system and three-dimensional digital image correlation measurements provided an overall percentage difference below 10% for all the specimen configurations with a maximum percentage difference recorded for the longitudinal angle-ply case of approximately 9%.

Publisher

SAGE Publications

Subject

Applied Mathematics,Mechanical Engineering,Mechanics of Materials,Modeling and Simulation

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Design of interface unit for microwave test equipment;2023 IEEE 3rd International Conference on Data Science and Computer Application (ICDSCA);2023-10-27

2. Transient Strain Monitoring of Weldments Using Distributed Fiber Optic System;Metals;2023-04-29

3. Ultrasonic inspection of thin composite laminates;Nondestructive Characterization and Monitoring of Advanced Materials, Aerospace, Civil Infrastructure, and Transportation XVII;2023-04-18

4. Investigation of the Crack Propagation in the Graphene/Synthetic Rubber Nanocomposite Materials with DIC Technique;Periodica Polytechnica Chemical Engineering;2022-02-15

5. Damage growth and failure detection in hybrid fiber composites using experimental in-situ optical strain measurements and smoothing element analysis;International Journal of Damage Mechanics;2021-09-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3