A practical nonlinear damage accumulation method to predict the life and crack propagation of blade subjected to multilevel cyclic fatigue loads

Author:

Gao Tianrun1ORCID,Jing Jianping12,Chen Changmin1,Cong Jiqing1,Li Jianzhao3,Cao Shiyu3

Affiliation:

1. The State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai, China

2. Fundamental Science on Vibration, Shock and Noise Laboratory, Shanghai, China

3. Harbin Marine Boiler and Turbine Research Institute, Harbin, China

Abstract

An accurate life prediction is important to the design of a high-speed rotary blade subjected to multilevel cyclic loads. The widely used Miner’s rule and uniaxial stress prediction method always deviate from actual life of the blade. A prediction method based on Chaboche’s nonlinear damage evolution model is utilized to predict the multilevel cyclic fatigue life of a compressor blade subjected to start-up centrifugal force and working aerodynamic force. Chaboche’s model is verified by comparing with experimental data of different materials. The blade life predicted by Chaboche’s rule and Miner’s rule are compared, and it is found that Miner’s rule might overestimate the blade life under the typical loading spectrum of start-up centrifugal force and working aerodynamic force. To study the impact of multiaxial stress state on the blade life, the life predicted by uniaxial stress method is compared to that predicted by multiaxial stress method, and it demonstrates that the multiaxial stress state of the blade should not be neglected. Finally, the crack propagation of the blade under multiaxial fatigue loads is simulated successfully by element deletion technique, which is conducted by translating Chaboche’s multiaxial model into a user defined UMAT program in ABAQUS. The predicted crack propagation life is compared with that predicted by an approximate Paris law method plate model. This research proves that the method to predict the blade life subjected to multilevel cyclic loads based on multiaxial Chaboche’s model could provide a valuable reference for engineering blade fatigue design.

Publisher

SAGE Publications

Subject

Applied Mathematics,Mechanical Engineering,Mechanics of Materials,Modelling and Simulation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3