Price Optimization for a Multistage Choice Model

Author:

Shi Jiaqi1,Ke Ginger Y2,Wang Zizhuo3ORCID,Zhang Lianmin45ORCID

Affiliation:

1. Department of Industrial Engineering and Operations Research, Columbia University, New York, NY, USA

2. Faculty of Business Administration, Memorial University of Newfoundland, St. John’s, Newfoundland and Labrador, Canada

3. School of Data Science, The Chinese University of Hong Kong, Shenzhen, China

4. Shenzhen Research Institute of Big Data, Shenzhen, China

5. School of Management and Economics, Shenzhen Finance Institute, The Chinese University of Hong Kong, Shenzhen, China

Abstract

Considering the real-world situations where a customer’s purchase choices in previous stages can influence the prices she encounters in subsequent stages, this research examines the multiproduct price optimization problem under a multistage choice model. Particularly, the seller commits to a multistage pricing policy and determines product prices based on the customer’s purchase history, and the customer makes purchase decisions such that the total expected utility is maximized. We show that the pricing problem has a unique optimal solution under some mild conditions and the optimal solution satisfies a modified equal adjusted markup property. Based on the property, the problem can be solved efficiently by reducing it to a single-dimensional search problem. Moreover, the optimal pricing policy has an important property, namely, the product with a higher adjusted markup in earlier stages should always lead to lower prices in subsequent stages. We also show that compared to customers who are myopic, the seller should offer higher first-stage prices and lower second-stage prices to forward-looking customers, which will lead to a higher profit. Numerical analyses are also conducted to demonstrate the above results.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3