Inhibition of hyperplasia during the implantation of the puborectalis-like artificial anal sphincter

Author:

Zhou Zerun1ORCID,Yan Guozhen1,Wang Zhiwu1,Jiang Pingping1,Yao Shengjian1,Ding Zifan1,Hua Fangfang1

Affiliation:

1. Shanghai Jiao Tong University, Shanghai, China

Abstract

Objectives: This study aims to extend the implantation lifetime of the puborectalis-like artificial anal sphincter by inhibiting the occurrence of hyperplasia following the implantation process. Method: A new transmission structure was designed inside the puborectalis-like artificial anal sphincter to generate an adequate torque to maintain the feces, even if hyperplasia developed around the prosthetic sphincter. An outer shell was added to the prosthetic sphincter to decelerate the occurrence of hyperplasia on the outer shell side. Medical titanium alloy was tested to replace the nylon-12 prosthetic sphincter, while polyetheretherketone was used for the construction of the power supply unit in the puborectalis-like artificial anal sphincter system instead of nylon-12. In vivo experiments were conducted to evaluate all the methods presented in this study with 10 Pa Ma piglets, 1 domestic pig, and 1 beagle dog during the past 2 years. Results: Compared with the previous prosthetic sphincter that was equipped with a fixed-axle gear transmission, the new transmission structure is equipped with a planet-gear train managed to generate a prosthetic sphincter output with a 53% larger torque but with the same size and type of motor as that used previously and increase the implantation lifetime by 56%. After the replacement of the nylon-12, the new prosthetic sphincter made of medical titanium alloy succeeded in extending the implanted lifetime by 83%. In addition, the lifetime was increased by 143%, when an outer shell was added to the prosthetic sphincter. Polyetheretherketone significantly decreased the growth rate of hyperplasia around the power supply unit by 44% after the replacement of the power supply unit material. After the combination of all the improvements, the longest implantation lifetime of the puborectalis-like artificial anal sphincter during the in vivo experiments was 7 months and 10 days, which reflected an improvement of 249%. Conclusion: All methods posted in this study were evaluated to be effective to prolong the implantation lifetime of the puborectalis-like artificial anal sphincter. Among the methods proposed, the most effective was the addition of the outer shell to the puborectalis-like artificial anal sphincter. The least effective method was the improvement of the transmission structure. Medical titanium alloy and polyetheretherketone were good replacements for nylon-12 that managed to extend the implantation lifetime and yield a moderate improvement.

Funder

National Natural Science Foundation of China

Shanghai Science and Technology Infrastructure Program

Publisher

SAGE Publications

Subject

Biomedical Engineering,Biomaterials,General Medicine,Medicine (miscellaneous),Bioengineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3