Past and future of blood damage modelling in a view of translational research

Author:

Goubergrits Leonid1,Kertzscher Ulrich1,Lommel Michael1

Affiliation:

1. Institute for Computational and Imaging Science in Cardiovascular Medicine, Charité – Universitätsmedizin Berlin, Berlin, Germany

Abstract

Anatomic pathologies such as stenosed or regurgitating heart valves and artificial organs such as heart assist devices or heart valve prostheses are associated with non-physiological flow. This regime is associated with regions of spatially high-velocity gradients, high-velocity and/or pressure fluctuations as well as neighbouring regions with stagnant flow associated with high residence time. These hemodynamic conditions cause destruction and/or activation of blood components and their accumulation in regions with high residence time. The development of next-generation artificial organs, which allow long-term patient care by reducing adverse events and improve quality of life, requires the development of blood damage models serving as a cost function for device optimization. We summarized the studies underlining the key findings with subsequent elaboration of the requirements for blood damage models as well as a decision tree based on the classification of existing blood damage models. The four major classes are Lagrangian or Eulerian approaches with stress- or strain-based blood damage. Key challenges were identified and future steps towards the translation of blood damage models into the device development pipeline were formulated. The integration of blood damage caused by turbulence into models as well as in vitro and in vivo validation of models remain the major challenges for future developments. Both require the development of novel experimental setups to provide reliable and well-documented experimental data.

Publisher

SAGE Publications

Subject

Biomedical Engineering,Biomaterials,General Medicine,Medicine (miscellaneous),Bioengineering

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Turbulence in surgical suction heads as detected by MRI;The Journal of ExtraCorporeal Technology;2023-06

2. Flow simulation-based particle swarm optimization for developing improved hemolysis models;Biomechanics and Modeling in Mechanobiology;2022-11-28

3. Analysis of rotary ventricular assist devices using CFD technique—A Review;Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering;2022-10-18

4. Linking Hydraulic Properties to Hemolytic Performance of Rotodynamic Blood Pumps;Advanced Theory and Simulations;2022-07-11

5. The effect of blood viscosity on shear‐induced hemolysis using a magnetically levitated shearing device;Artificial Organs;2022-01-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3