Microscopic and chemical characterization of PVC tube used for dialysis lines: A new approach

Author:

Petrachi Tiziana1ORCID,Arnaud Gaëlle F1,Roncioni Simone1,Resca Elisa1,Veronesi Elena12,Dominici Massimo12,Tomasi Aldo13,Cuoghi Aurora13

Affiliation:

1. Science and Technology Park for Medicine, Tecnopolo di Mirandola “Mario Veronesi”, Mirandola, Italy

2. Department of Medical and Surgical Sciences, University Hospital of Modena and Reggio Emilia, Mirandola, Italy

3. Department CHIMOMO, University Hospital of Modena and Reggio Emilia, Mirandola, Italy

Abstract

Polyvinylchloride is universally agreed upon to be the material of choice for tubings and for containers for medical application. Many alterations of the chemical/physical surface conditions, mainly due to an altered extrusion process, could influence its biocompatibility by promoting platelet aggregation. Biocompatibility and safety of the medical device must be preserved, also monitoring the migration of additives within polyvinylchloride during the diffusion process. A large variety of methods are used to verify the correct composition and extrusion of polyvinylchloride but, generally, they need long experimental time and are expensive. The aim of the study is to propose a simple, economic and rapid approach based on Fourier transform-infrared spectroscopy and Coomassie Blue staining. The method has been used to detect chemical and morphological defects caused by an altered extrusion process on 20/75 polyvinylchloride tubings in a blind test. This approach positively identified altered samples in 80% of the cases. The suggested approach represents a reliable and versatile method to detect and monitor surface defects by an easy, inexpensive and reproducible method.

Publisher

SAGE Publications

Subject

Biomedical Engineering,Biomaterials,General Medicine,Medicine (miscellaneous),Bioengineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3