Molecular adsorbent recirculating system (MARS) and continuous veno-venous hemodiafiltration (CVVHDF) for diltiazem removal: An in vitro study

Author:

Fabresse Nicolas12,Larabi Islam Amine12,Lamy Elodie1,Mégarbane Bruno3,Alvarez Jean-Claude12ORCID

Affiliation:

1. MassSpecLab, Plateforme de Spectrométrie de Masse, UFR des Sciences de la Santé Simone Veil, Université Versailles Saint-Quentin, Montigny le Bretonneux, France

2. Laboratoire de Pharmacologie—Toxicologie, Centre Hospitalier Universitaire Raymond Poincaré, AP-HP, Garches, France

3. Réanimation Toxicologique, Centre Hospitalier Universitaire Lariboisière, Paris, France

Abstract

The objective of the present study was to evaluate the efficacy of the molecular adsorbent recirculating system (MARS) vs continuous veno-venous hemodiafiltration (CVVHDF). Diltiazem poisoning was simulated in a central compartment consisting in a 5L dialysis solute spiked with diltiazem at two different toxic concentrations: 750 and 5000 µg/L. For CVVHDF, mean extraction coefficients (EC = (in concentration − out concentration)/in concentration) were concentration-dependent with a decrease all along the dialysis. At the end of the sessions the mean amounts remaining in the central compartment were 8% and 7% of the initial dose at 750 and 5000 µg/L, respectively. The mean cumulative amounts found in the effluent were 60% and 75% of the initial dose, respectively. The missing amounts accounted for 32% and 18% of the initial dose, respectively, corresponding to an adsorption to the dialysis membrane. In contrast, the different compartments of the MARS resulted in undetectable output concentration earlier that the end of the session. The mean concentrations of diltiazem remaining in the central compartment were <1 µg/L at the end of the sessions. Global ECs were around 50% all along the experiment at both concentrations, and the average charcoal cartridge ECs was 80% throughout the experiments. CVVHDF system in the developed model was efficient for diltiazem removal, mainly by diffusion, convection and to a lesser extent by adsorption to the dialysis membrane. In MARS system, resin cartridge and hemodialysis components are ineffective, charcoal cartridge is responsible for almost all drug removal.

Publisher

SAGE Publications

Subject

Biomedical Engineering,Biomaterials,General Medicine,Medicine (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3