Development of a Hybrid Liver Support System: A Review

Author:

Gerlach J.C.1

Affiliation:

1. Chirurgische Klinik, Virchow - Klinikum, Humboldt - Universität Berlin - Germany

Abstract

Hybrid liver support systems (LSS) for the use of the detoxifying, metabolic synthetic and regulatory capabilities of liver cells are under development for extracorporeal therapy of acute liver failure and for bridging to liver transplantation. A summary of our development is discussed. A five-step technique for primary liver cell isolation has been introduced in order to address larger scale procurement of hepatocytes. Immobilisation of the cells after isolation appears to be one of the main factors in maintaining hepatocyte function in vitro. Different techniques have been investigated. Using the cell-cell adhesion technique, a culture model was developed for the immobilisation of hepatocytes between capillary membranes. Four separate capillary membrane systems, each forming independent compartments are woven in order to create a three dimensional network. A bioreactor design has been developed. The construction provides different functions, including decentralised cell perfusion. The bioreactor enables 3 dimensional reorganisation of cells, integral oxygenation and decentralised metabolite exchange. The bioreactor has been scaled-up to allow hepatocytes and sinusoidal endothelial cells to be cultured in quantities sufficient for therapeutic application. In a healthy pig model, possible limiting side effects of therapy with this device were excluded. The efficacy of the system has been demonstrated in a hepatectomised pig model. Subsequently, a complete hybrid liver support system for human studies was introduced and applied clinically.

Publisher

SAGE Publications

Subject

Biomedical Engineering,Biomaterials,General Medicine,Medicine (miscellaneous),Bioengineering

Cited by 166 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Old age as a risk factor for liver diseases: Modern therapeutic approaches;Experimental Gerontology;2023-12

2. Textile-based scaffolds for tissue engineering;Advanced Textiles for Wound Care;2019

3. New Phase of Growth for Xenogeneic-Based Bioartificial Organs;International Journal of Molecular Sciences;2016-09-21

4. Artificial Liver Bioreactor Design;Bioreactors;2016-02-26

5. Tissue Engineering: Liver;Encyclopedia of Biomedical Polymers and Polymeric Biomaterials;2016-01-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3