Decreased Bacterial Adhesion to Surface-Treated Titanium

Author:

Del Curto B.1,Brunella M.F.1,Giordano C.1,Pedeferri M.P.1,Valtulina V2,Visai L2,Cigada A.1

Affiliation:

1. Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Milan - Italy

2. University of Pavia, Department of Biochemistry, Medicine Section, Pavia - Italy

Abstract

Osteointegrative dental implants are widely used in implantology for their well-known excellent performance once implanted in the host. Remarkable bacterial colonization along the transgingival region may result in a progressive loss of adhesion at gum-implant interface and an increase of the bone area exposed to pathogens. This phenomenon may negatively effect the osteointegration process and cause, in the most severe cases, implant failure. The presence of bacteria at implant site affect the growth of new bone tissue and consequently, the achievement of a mechanically stable bone-implant interface, key parameters for a suitable implant osteointegration. In the present work, a novel surface treatment has been developed and optimized in order to convert the amorphous titanium oxide in a crystalline layer enriched in anatase capable of providing not only antibacterial properties but also of stimulating the precipitation of apatite when placed in simulated body fluid. The collected data have shown that the tested treatment results in a crystalline anatase-type titanium oxide layer able to provide a remarkable decrease in bacterial attachment without negatively effecting cell metabolic activity. In conclusion, the surface modification treatment analyzed in the present study might be an elegant way to reduce the risk of bacterial adhesion and increase the lifetime of the transgingival component in the osteointegrated dental implant.

Publisher

SAGE Publications

Subject

Biomedical Engineering,Biomaterials,General Medicine,Medicine (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3