Mathematical models for shear-induced blood damage based on vortex platform

Author:

Mei Xu1ORCID,Zhong Min1,Ge Wanning1,Zhang Liudi1ORCID

Affiliation:

1. Artificial Organ Laboratory, Bio-manufacturing Research Centre, School of Mechanical and Electrical Engineering, Soochow University, Suzhou, China

Abstract

Non-physiological shear stress in Ventricular Assist Device (VAD) is considered to be an important trigger of blood damage, which has become the biggest shackle for clinical application. The researches on blood damage in literature were limited to qualitative but did not make much quantitative analysis. The purpose of this study was to investigate the quantitative influence of two flow-dependent parameters: shear stress (rotational speed) and exposure time on the shear-induced damage of red blood cells and von Willebrand Factor (vWF). A vortex blood-shearing platform was constructed to conduct in vitro experiments. Free hemoglobin assay and vWF molecular weight analysis were then performed on the sheared blood samples. MATLAB was used for regression fitting of original experimental data. The quantitative correlations between the hemolysis index, the degradation of high molecular weight vWF and the two flow-dependent parameters were found both following the power law model. The mathematic models indicated that the sensitivity of blood damage on red blood cells and vWF to exposure time was both greater than that of shear stress. Besides, the damage of vWF was more serious than that of red blood cells at the same flow condition. The models could be used to predict blood damage in blood-contacting medical devices, especially for the slow even stagnant blood flow regions in VAD, thus may provide useful guidance for VAD development and improvement. It also indicated that the vortex platform can be used to study the law of blood damage for the simple structure and easy operation.

Funder

China Postdoctoral Science Foundation

National Natural Science Foundation of China

natural science foundation of jiangsu province

Publisher

SAGE Publications

Subject

Biomedical Engineering,Biomaterials,General Medicine,Medicine (miscellaneous),Bioengineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3