Affiliation:
1. BioArtProducts GmbH, Rostock - Germany
2. Dialyse-Gemeinschaft Nord e.V., Rostock - Germany
3. Laborarztpraxis Dr. Müller, Rostock - Germany
Abstract
Since the introduction of on-line substituate preparation, high substituate rates (Qs) in pre- and postdilution for hemodiafiltration (HDF) procedures can be realized. During postdilution HDF (POD-HDF) and additional convective removal is possible, but in vivo Qs is limited to approx. 1/3Qb (bloodflow). With predilution HDF (PRD-HDF) higher Qs and therefore high convective transport rates by ultrafiltration can be reached. On the other hand the blood concentration is diminished by predilution. Further decrease of the diffusive transport is caused by reduced dialysate flow Qd due to separation of the substituate from the dialysate (Fresenius 4008 On-Line HDF, Gambro AK100 Ultra). The theoretical description of the combined diffusive-convective transport is limited to 1-dimensional models and small UF-rates. Therefore for practical and theoretical purposes the assessment of the efficacy of on-line PRD-HDF and POD-HDF in different molecular weight ranges is desirable. By means of in vitro experiments the effective clearances Keff of hemodialysis (HD, dialyzer: Fresenius F60) for urea, creatinine, vitamin B12 and inulin were compared with measured and theoretical Keff of POD- and PRD-HDF. The theoretical expectation is confirmed that Keff for small molecular weight substances decreases slightly with PRD-HDF and increases for larger molecules. In the case of POD-HDF Keff for small molecular weight substances increases slightly and strongly for larger molecules. In vivo experiments were performed to measure the real substance removal from patient's blood and to figure out the impact of dialysate flow (collection of the used dialysate during the 1. treatment hour and concentration measurements for urea, creatinine, phosphate, ß2-MG). The results show that the substraction of Qs from Qd reduces Keff for urea, creatinine and phosphate but not for ß2-MG. PRD-HDF with Qd = 500 ml/min is significantly less effective for small molecules than HD. There is no significant difference of Keff for urea, creatinine, phosphate during HD and PRD-HDF with Qd = 800 ml/min, but a significant increase of 10-15% for POD-HDF Keff for ß2-MG increases by 75% for PRD-HDF and 95% for POD-HDF compared with HD (Qd = 500 ml/min).
Subject
Biomedical Engineering,Biomaterials,General Medicine,Medicine (miscellaneous),Bioengineering
Cited by
54 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献