Ultrasonic mixing chamber as an effective tool for the biofabrication of fully graded scaffolds for interface tissue engineering

Author:

Chiesa Irene1,Fortunato Gabriele Maria12,Lapomarda Anna12,Di Pietro Licia12,Biagini Francesco12,De Acutis Aurora12,Bernazzani Luca3,Tinè Maria Rosaria3,De Maria Carmelo12,Vozzi Giovanni12

Affiliation:

1. Research Center “E. Piaggio,” University of Pisa, Pisa, Italy

2. Department of Ingegneria dell’Informazione, University of Pisa, Pisa, Italy

3. Department of Chemistry and Industrial Chemistry, University of Pisa, Pisa, Italy

Abstract

One of the main challenges of the interface-tissue engineering is the regeneration of diseased or damaged interfacial native tissues that are heterogeneous both in composition and in structure. In order to achieve this objective, innovative fabrication techniques have to be investigated. This work describes the design, fabrication, and validation of a novel mixing system to be integrated into a double-extruder bioprinter, based on an ultrasonic probe included into a mixing chamber. To validate the quality and the influence of mixing time, different nanohydroxyapatite–gelatin samples were printed. Mechanical characterization, micro-computed tomography, and thermogravimetric analysis were carried out. Samples obtained from three-dimensional bioprinting using the mixing chamber were compared to samples obtained by deposition of the same final solution obtained by manually operated ultrasound probe, showing no statistical differences. Results obtained from samples characterization allow to consider the proposed mixing system as a promising tool for the fabrication of graduated structures which are increasingly being used in interface-tissue engineering.

Funder

IMAGO

Publisher

SAGE Publications

Subject

Biomedical Engineering,Biomaterials,General Medicine,Medicine (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3