Affiliation:
1. Department of Paediatrics, University Hospital Maastricht - The Netherlands
Abstract
Perfluorochemical or perfluorocarbon liquids have an enormous gas-carrying capacity. During tidal liquid ventilation the respiratory medium of both functional residual capacity and tidal volume is replaced by neat perfluorocarbon liquid. Tidal liquid ventilation is characterized by convective and diffusive limitations, but offers the advantage of preserved functional residual capacity, high compliance and improved ventilation-perfusion matching. During partial liquid ventilation only the functional residual capacity is replaced by perfluorocarbon liquid. Both tidal and partial liquid ventilation improve gas exchange and lung mechanics in hyaline membrane disease, adult respiratory distress models and meconium aspiration. Compared to gas ventilation, there is less histologic evidence of barotrauma after liquid ventilation. Cardio-pulmonary interaction, inherent to the high density of liquid, and long term safety need further study. However, extrapolating from animal data, and taking into account promising human pilot studies, liquid ventilation has the desired properties to occupy an important place in the therapy of restrictive lung disease in man.
Subject
Biomedical Engineering,Biomaterials,General Medicine,Medicine (miscellaneous),Bioengineering
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献