Blood Flow around Hollow Fibers

Author:

Dierickx P.W.T.1,De Wachter D.1,Verdonck P.R.1

Affiliation:

1. Institute of Biomedical Technology, Ghent University, Gent - Belgium

Abstract

In an artificial lung, blood is oxygenated and flows around a bundle of hollow fibers while gas flows inside the fiber. The objective of this study is to understand the hydrodynamics of three different fiber banks (inline square IS, staggered square SS and equilateral triangle ET) and to investigate the influence of both a Newtonian and non-Newtonian Casson viscosity model on the flow field. A two-dimensional finite element model for permanent, isothermal, laminar blood flow perpendicular to hollow fibers is used. All fibers are assumed identical, straight and parallel. Porosity ranges from 0.4 to 0.6 and Reynolds number varies from 1 to 60. For a given Re, ET generates less resistance than SS, the latter being comparable with IS. A lower porosity increases resistance. Non-Newtonian viscosity affects velocity patterns only at low Re (<0.5) and higher porosity (>0.5). Resistance at low Re is significantly elevated in the fiber banks due to an overall increase in viscosity. This model makes it possible to study the influence of geometry and viscosity on hydrodynamics in fiber banks and may aid in the optimization of hollow fiber artificial lung design.

Publisher

SAGE Publications

Subject

Biomedical Engineering,Biomaterials,General Medicine,Medicine (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3