Hydraulic Refinement of An Intraarterial Microaxial Blood Pump

Author:

Sieβ T.1,Reul H.1,Rau G.1

Affiliation:

1. Helmohltz-lnstitute for Biomedical Engineering at Aachen University of Technology (RWTH), Aachen - Germany

Abstract

Intravascularly operating microaxial pumps have been introduced clinically proving to be useful tools for cardiac assist (1–4). However, a number of complications have been reported in literature associated with the extra-corporeal motor and the flexible drive shaft cable (5,6). In this paper, a new pump concept is presented which has been mechanically and hydraulically refined during the developing process. The drive shaft cable has been replaced by a proximally integrated micro electric motor and an extra-corporeal power supply (7). The conduit between pump and power supply consists of only an electrical power cable within the catheter resulting in a device which is indifferent to kinking and small curvature radii. Anticipated insertion difficulties, as a result of a large outer pump diameter, led to a two-step approach with an initial 6,4mm pump version and a secondary 5,4mm version. Both pumps meet the hydraulic requirement of at least 2.5I/min at a differential pressure of 80–100mmHg. The hydraulic refinements necessary to achieve the anticipated goal are based on ongoing hydrodynamic studies of the flow inside the pumps. Flow visualization on a 10:1 scale model as well as on 1:1 scale pumps have yielded significant improvements in the overall hydraulic performance of the pumps. One example of this iterative developing process by means of geometrical changes on the basis of flow visualization is illustrated for the 6.4mm pump.

Publisher

SAGE Publications

Subject

Biomedical Engineering,Biomaterials,General Medicine,Medicine (miscellaneous),Bioengineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3