Affiliation:
1. Artificial Organ Laboratory, Bio-Manufacturing Research Centre, School of Mechanical and Electric Engineering, Soochow University, Suzhou, Jiangsu, China
2. Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
Abstract
Thrombosis and its related events have become a major concern during the development and optimization of ventricular assist devices (VADs, also called blood pumps), and limit their clinical use and economic benefits. Attempts have been made to model the thrombosis formation, considering hemodynamic and biochemical processes. However, the complexities and computational expenses are prohibitive. Blood stasis is one of the key factors which may lead to the formation of thrombosis and excessive thromboembolic risks for patients. This study proposed a novel approach for modeling blood stasis, based on a two-phase flow principle. The locations of blood residual can be tracked over time, so that regions of blood stasis can be identified. The blood stasis in an axial blood pump is simulated under various working conditions, the results agree well with the experimental results. In contrast, conventional hemodynamic metrics such as velocity, time-averaged wall shear stress (TAWSS), and relative residence time (RRT), were contradictory in judging risk of blood stasis and thrombosis, and inconsistent with experimental results. We also found that the pump operating at the designed rotational speed is less prone to blood stasis. The model provides an efficient and fast alternative for evaluating blood stasis and thrombosis potential in blood pumps, and will be a valuable addition to the tools to support the design and improvement of VADs.
Funder
National Natural Science Foundation of China
national key research and development program of china
Subject
Biomedical Engineering,Biomaterials,General Medicine,Medicine (miscellaneous),Bioengineering
Cited by
27 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献