Functionally Adapted Surfaces on a Silicone Keratoprosthesis

Author:

Langefeld S.1,Völcker N.2,Kompa S.1,von Fischern T.1,Bienert H.1,Klee D.2,Höcker H.2,Reim M.3,Schrage N. F.3

Affiliation:

1. Interdisciplinary Center of Clinical Research, Biomat. at the RWTH Aachen

2. Institute of Textile and Macromolecular Chemistry of the RWTH Aachen

3. Department of Ophthalmology of the RWTH Aachen - Germany

Abstract

Background Silicone intraocular lenses as well as silicone sponges and encircling bands on the bulbar surface are widely used and are well tolerated. The aim of this project is a new one-piece silicone keratoprosthesis with enhanced cell adhesion in the haptic region to optimize the keratoprosthesis stability. These investigations show how enhanced profileration of conjunctival fibroblasts and, therefore, improved tissue compatibility can be achieved by hydrophilizing and by protein immobilisation on a hydrophobic silicone surface. This allows a combination of desired chemical and mechanical properties of the silicone bulk material with surfaces of improved tissue compatibility. Methods Silicone foils with surface modifications of different kinds were tested. Experiments were done using cell cultures with murine fibroblasts L-929 and human conjuctival fibroblasts. Cytotoxicity assays were carried out with cells grown on the material in direct contact, as well as in indirect contact, with extracts (EN 30993-5). Viability stains by means of fluoresceindiacetate and ethidiumbromide together with morphology analyses by hemalaun-staining were performed. Results For the unmodified and modified foils themselves and their extracts any negative influence on cell cultures of murine and human cells could be excluded. There was a gradual improvement of cell morphology, spreading and proliferation dependent on the degree of surface modification. Covalently immobilised fibronectin showed the best results in contrast to adsorptive binding. Conclusions Silicone surfaces can be modified chemically with bioactive proteins. These modifications are cell compatible and do not result in toxic reactions. The degree and type of silicone hydrophilization results in improved development of cell morphology, spreading and proliferation. Even better results are obtained after covalent binding of bioactive proteins like fibronectin. Improved biocompatibility with enhanced cellular overgrowth has been demonstrated in vitro for the modified silicone of the haptic region. We believe that this type of modification will help in reducing extrusion problems observed with former keratoprostheses.

Publisher

SAGE Publications

Subject

Biomedical Engineering,Biomaterials,General Medicine,Medicine (miscellaneous),Bioengineering

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3