Beat-rate Dependent Mitral Flow Patterns for in Vitro Hemodynamic Applications

Author:

Vismara Riccardo1,Fiore Gianfranco B.1

Affiliation:

1. Department of Bioengineering, Politecnico di Milano, Milan - Italy

Abstract

The conservative surgery approach for restoring the functionality of heart valves has predominated during the last two decades, particularly for the mitral valve. In vitro pulsatile testing is a key methodology for the investigation of heart valve hemodynamics, and particularly for the ideation, validation and optimization of novel techniques in heart valve surgery. Traditionally, however, pulsatile mock loops have been developed for the study of aortic valve substitutes, and scarce attention has been paid in replicating the mitral flow patterns with due hemodynamic fidelity. In this work we provide detailed analytical expressions to produce beat-rate dependent, physiologic-like mitral flow patterns for in vitro applications. The approach we propose is based on a biomechanical analysis of the factors which govern hemodynamic changes in the mitral flow pattern, namely in terms of E and A wave contours and E/A peaks ratio, when switching from rest to mild exercise conditions. The patterns from the model we obtained were in good agreement with clinical literature data in terms of i) gradual superimposition of the E and A wave, which yielded a single peak at 96 bpm; ii) decrease in the E/A ratio with increasing heart rate; iii) amount of flow delivered by each of the two waves. The proposed method provides a physiologically representative, beat-rate dependent analytical expression of the mitral flow pattern, which can be used in in vitro hydrodynamic investigations to accurately replicate the changes that the flow waves experience when the heart rate shifts from rest to mild exercise conditions.

Publisher

SAGE Publications

Subject

Biomedical Engineering,Biomaterials,General Medicine,Medicine (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3