Normothermic ex vivo perfusion of deceased donor kidneys and its clinical potential in kidney transplantation outcomes

Author:

Unes Meghan1ORCID,Kurashima Kento2,Caliskan Yasar3ORCID,Portz Edward1,Jain Ajay2,Nazzal Mustafa4

Affiliation:

1. Saint Louis University, St. Louis, MO, USA

2. Department of Pediatrics, SSM Saint Louis University School of Medicine, Saint Louis, MO, USA

3. Division of Nephrology, SSM Saint Louis University Hospital, Saint Louis, MO, USA

4. Department of Surgery, SSM Saint Louis University Hospital, Saint Louis, MO, USA

Abstract

In recent years, normothermic machine perfusion (NMP) has emerged in conversation surrounding organ preservation and transplantation techniques with the goal of improving patient and clinical outcomes. This is in great attempt to address the rate of non-utilization and the shortage of available organs in kidney transplantation. This focus in mind, normothermic perfusion presents itself as a potential tool to mimic physiological conditions and improve current preservation methods, such as static cold storage. This review serves to improve understanding of the observed connection between the consequences of ischemia and reperfusion injury and traditional preservation techniques as well as how renal NMP may mitigate these issues. Previous studies suggest that reducing time in static cold storage methods by promoting the normothermic perfusion model results in decreased delayed graft function and post-transplant complications. This review also aims to present the immense clinical potential NMP has on future kidney transplantation success and what this means for the fields of nephrology and transplantation. While great strides have been made to evaluate normothermic perfusion’s impact on kidney graft viability and transplant success, future research into unified protocol, clinically relevant biomarkers, cost-utility analysis, and use with associated therapeutic and imaging modalities is paramount.

Publisher

SAGE Publications

Subject

Biomedical Engineering,Biomaterials,General Medicine,Medicine (miscellaneous),Bioengineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3