Bovine erythrocytes are poor surrogates for human when exposed to sublethal shear stress

Author:

McNamee Antony P1ORCID,Kuck Lennart1ORCID,Simmonds Michael J1

Affiliation:

1. Biorheology Research Laboratory, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia

Abstract

Animal blood products are routinely used as surrogates for human tissue in haemocompatibility testing of rotary blood pumps. Bovine blood is particularly attractive due to the animal’s large blood volume; however, bovine red blood cells (RBC) differ substantially from those of human, both in biophysical properties and molecular composition. We aimed to determine whether differences also exist in the sensitivity of bovine RBC to a standardised shear stress protocol. Fresh blood from healthy human and bovine donors was exposed to discrete combinations of shear stress using a Couette shearing system, prior to assessment of cellular deformability and mechanical sensitivity. Each sample was exposed to 25 sublethal shear stress combinations (ranging 60–100 Pa × 5–300 s). While bovine RBC exhibited decreased maximal elongation in the absence of conditioning shear, overall deformability at lower shears was ~1.8-fold greater than human. When exposed to any conditioning shear stresses >80 Pa (or 60–70 Pa beyond 5 s), human RBC were significantly rigidified, with greater magnitudes and prolonged exposure compounding this effect. Significantly larger shears were required to rigidify bovine RBC; the most extreme shear condition (100 Pa × 300 s) resulted in approximately three-times more rigidification of human RBC than bovine (137% and 47% respectively). Bovine RBC have superior resilience to mechanical stress when compared with human. Using bovine blood in ex vivo evaluation of rotary blood pumps may thus misrepresent and overestimate device-blood success, and may also have flow-on effects for eventual users. Fresh human blood during early-phase ex vivo testing is thus recommended, given shear-inducing blood pumps are designed for humans – not cattle.

Funder

Prince Charles Hospital Foundation

Medical Advances Without Animals Trust

Publisher

SAGE Publications

Subject

Biomedical Engineering,Biomaterials,General Medicine,Medicine (miscellaneous),Bioengineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3