Model-Based Dialysis Adequacy Prediction by Continuous Dialysate Urea Monitoring

Author:

Chiari L.1,Cappello A.1,Tartarini R.1,Paolini F.2,Calzavara P.3

Affiliation:

1. Department of Electronics, Computer Science and Systems, University of Bologna, Bologna

2. Hospal Dasco Spa, Medolla (MO) Ospedale Regionale di Treviso, Treviso - Italy

3. Nephrology and Dialysis Unit, Ospedale Regionale di Treviso, Treviso - Italy

Abstract

A modeling approach for on-line estimation of urea kinetics from continuous measurement of urea concentration in the effluent dialysate stream (DUN) is presented. On-line identification of urea kinetics response parameters is used to predict and update dialysis adequacy during the treatment. Dialysis adequacy can be quantified in several ways, but its strict dependence on final urea concentration is a major fact. For this reason, a good predictive skill on the time course of DUN may enable better performances in the control of dialysis outcome by treatment parameters adjustment. A post-filter enzymatic sensor performs continuous measurement of DUN on patients undergoing standard haemodialysis. To get an early prediction of the end dialysis urea level, the solution of a variable volume double-pool (VVDP) model is used, whose parameters are identified at each time on the basis of the past DUN history. Unlike the variable volume single-pool (VVSP) model, this enables a prompt and accurate estimation of the final DUN. In fact, after 75 min the estimates always differ by less than 10% from the values measured by the sensor at the end of the treatment. Moreover, values predicted by the model in the last hour always lie within 1% of measured final values. Realtime knowledge of an analytic expression for whole DUN time course also enables the accurate prediction of total removed urea, with no need of cumbersome dialysate collection techniques.

Publisher

SAGE Publications

Subject

Biomedical Engineering,Biomaterials,General Medicine,Medicine (miscellaneous),Bioengineering

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3