Study of cellular femoral stem for stress shielding and interface stability

Author:

Rahmat Neda1ORCID,Kadkhodapour Javad1,Arbabtafti Mohammdreza1

Affiliation:

1. Department of Mechanical Engineering, Shahid Rajaee Teacher Training University, Tehran, Iran

Abstract

Implant failure is due to stress shielding and interface micromotion. The application of porous structures in the femoral implant has a great effect on reducing stress shielding and improving the stability of the bone-implant interface. The performance of femoral stems with triply periodic minimal surface (TPMS) structures, IWP, and Gyroid structures was evaluated using finite element analysis. We studied the stress shielding phenomenon of the porous femoral stem based on the ability of stress transfer to the femur. The micromotion at the bone-implant interface was explored for different porous femoral stems. The effect of gradient structure design was investigated in the axial direction of the stem. These gradient designs involved a stem with an increasing volume fraction in the axial direction (IAGS) and a decreasing volume fraction along the stem (DAGS). The results showed that the axial stiffness of the stem has a direct effect on stress shielding and an inverse relation to bone-implant micromotion. The finite element analysis results inferred that bone resorption is higher in the stems with IWP structure than in Gyroid at the same volume fraction. Axially graded stems transfer higher stress to the femur than homogenous porous stems. DAGS design of IWP and Gyroid and IAGS Gyroid increased the stress on the proximal-medial of the femur. Homogeneous porous stems with high porosity (80% porosity for IWP and 70% porosity for Gyroid) and DAGS design exhibited low stress shielding and controlled bone-implant interface micromotion within an acceptable range for bone ingrowth.

Publisher

SAGE Publications

Subject

Biomedical Engineering,Biomaterials,General Medicine,Medicine (miscellaneous),Bioengineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Advanced Porous Hip Implants: A Comprehensive Review;Heliyon;2024-09

2. Functionally graded stem optimizes the fixed and sliding surface coupling mechanism;Computer Methods in Biomechanics and Biomedical Engineering;2023-12-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3