Expansion of Human Mesenchymal Stem Cells in a Fixed-Bed Bioreactor System Based on Non-Porous Glass Carrier – Part A: Inoculation, Cultivation, and Cell Harvest Procedures

Author:

Weber Christian1,Freimark Denise1,PöRtner Ralf2,Pino-Grace Pablo1,Pohl Sebastian1,Wallrapp Christine3,Geigle Peter3,Czermak Peter14

Affiliation:

1. Institute of Biopharmaceutical Technology, University of Applied Sciences Giessen-Friedberg, Giessen - Germany

2. Institute of bioprocess and Biosystems Engineering, University of Technology, Hamburg - Germany

3. CellMed AG, Alzenau - Germany

4. Department of Chemical Engineering, Kansas State University, Manhattan, KS - USA

Abstract

Human mesenchymal stem cells (hMSC) are a promising cell source for several applications of regenerative medicine. The cells employed are either autologous or allogenic; by using stem cell lines in particular, allogenic cells enable the production of therapeutic cell implants or tissue engineered implants in stock. For these purposes, the generally small initial cell number has to be increased; this requires the use of bioreactors, which offer controlled expansion of the hMSC under GMP-conform conditions. In this study, divided into part A and B, a fixed bed bioreactor system based on non-porous borosilicate glass spheres for the expansion of hMSC, demonstrated with the model cell line hMSC-TERT, is introduced. The system offers convenient automation of the inoculation, cultivation, and harvesting procedures. Furthermore, the bioreactor has a simple design which favors its manufacturing as a disposable unit. Part A is focused on the inoculation, cultivation, and harvesting procedures. Cultivations were performed in lab scales up to a bed volume of 300 cm3. The study showed that the fixed bed system, based on 2-mm borosilicate glass spheres, as well as the inoculation, cultivation, and harvesting procedures are suitable for the expansion of hMSC with high yield and vitality.

Publisher

SAGE Publications

Subject

Biomedical Engineering,Biomaterials,General Medicine,Medicine (miscellaneous),Bioengineering

Cited by 53 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3