The Effect of Oxygen Transport Resistances on the Viability and Functions of Isolated Rat Hepatocytes

Author:

Catapano G.1,De Bartolo L.1,Lombardi C.P.2,Drioli E.1

Affiliation:

1. Department of Chemical and Materials Engineering, University of Calabria, Arcavacata di Rende (CS)

2. Institute of Clinical Surgery, Catholic University of the Sacred Heart, Roma - Italy

Abstract

The treatment of fulminant hepatic failure with a bioartificial liver support device relies on the possibility of replacing the detoxification and synthetic functions of the injured liver for as long as needed for patient recovery. In spite of progress in cell culture techniques, the effective use of isolated hepatocytes in liver support devices is currently hampered by a lack of information on the metabolic factors limiting long term hepatocyte culture. In this paper, we report our investigation on the effects of oxygen transport resistances on the viability and functions of isolated rat hepatocytes cultured on collagen coated Petri dishes. Detoxification and synthetic functions of the hepatocytes were studied with respect to ammonia and phenolsulphonphthalein elimination and urea synthesis. Lower resistances to oxygen transport favored hepatocyte survival. The isolated hepatocytes synthesized urea at rates that decreased as the resistance to oxygen transport increased. The rate at which urea was synthesized also decreased during the culture. Neither PSP, nor ammonia elimination rate was greatly affected by increasing oxygen transport resistances and remained rather constant up to a week of culture.

Publisher

SAGE Publications

Subject

Biomedical Engineering,Biomaterials,General Medicine,Medicine (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3