Affiliation:
1. Clinic for Cardiovascular Surgery, University Hospital Zürich - Switzerland
2. Department of Pathology, University Hospital Zürich - Switzerland
3. Department of Biomaterials, Swiss Federal Institute of Technology, Zürich - Switzerland
Abstract
Optimized in vitro formation of strong tissue is a prerequisite for tissue engineering of cardiovascular structures, such as heart valves and blood vessels. This study evaluates different growth media additives as to cell proliferation, extracellular matrix formation, and mechanical characteristics. Biodegradable polymers were seeded with human vascular myofibroblasts. Group A was cultured with standard medium, groups B, C, and D were in addition supplemented with ascorbate, fibroblast growth factor (bFGF), and both respectively. Analysis included histology, electron microsocopy, mechanical testing, and biochemical assays for cell proliferation (DNA) and extracellular matrix (collagen). DNA content increased in all groups, showing significantly more cells in group C and D after 14d. Collagen increased in all groups, except for C. Morphology showed viable, layered cellular tissue, with collagen fibrils after 2w, most pronounced in B and D. Mechanical properties decreased initially, stabilizing after 2w. In conclusion, standard nutrient media were efficient for seeded human vascular cells cultured on biodegradable meshes. Supplementation with bFGF+ascorbate resulted in enhanced early cell proliferation and structurally more mature tissue formation.
Subject
Biomedical Engineering,Biomaterials,General Medicine,Medicine (miscellaneous),Bioengineering
Cited by
25 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献