“UroMaix” Scaffolds: Novel Collagen Matrices for Application in Tissue Engineering of the Urinary Tract

Author:

Becker C.1,Olde Damink L.2,Laeufer T.1,Brehmer B.1,Heschel I.2,Jakse G.1

Affiliation:

1. Department of Urology, University Hospital and Medical Faculty, RWTH Aachen, Aachen - Germany

2. Matricel GmbH, Herzogenrath - Germany

Abstract

Reconstruction of bladder and ureter tissue is indicated in cases of injury, stenosis, infection or tumor. Substitution by ileum, colon or pure synthetic polymers generates a variety of complications. Biohybrid tissue mimicking structural and functional attributes of the multilayered wall architecture of the urinary conduit may be the solution to current problems. This study reports on porcine urinary tract cells isolated and placed on UroMaix matrices with different degrees of cross-linking produced from highly purified type I collagen from medically approved porcine tissue. A patented procedure revealed membrane structures composed of a dense fibrous side and an open fibrous side. These scaffolds with the porcine urinary tract cells were incubated in a batch culture system for up to 14 days. Cell growth and topographical orientation were examined. Urothelial cells showed maximum attachment and a significant increase of living cells on the dense fiber layer of UroMaix-1. No attachment of urothelial cells occurred on the other prototypes. Smooth muscle cells showed similar behavior within the open fiber layer of all UroMaix matrices. Both urothelial and smooth muscle cells retained their phenotypes as demonstrated by the immunostaining of epithelial cytokeratin 18 and the smooth muscle myosin heavy chain respectively. Thus we could show that UroMaix scaffolds support the attachment and proliferation of urinary tract cells. The elastomeric properties of the collagenous matrices promise attractive applications in the tissue engineering of the urinary tract with its high mechanical demands.

Publisher

SAGE Publications

Subject

Biomedical Engineering,Biomaterials,General Medicine,Medicine (miscellaneous),Bioengineering

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Tissue-Engineering Bladder Augmentation;Neurourology;2019

2. Recent advances on biomedical applications of scaffolds in wound healing and dermal tissue engineering;Artificial Cells, Nanomedicine, and Biotechnology;2017-07-12

3. Mimetix® electrospun scaffold;Technology Platforms for 3D Cell Culture;2017-03-03

4. Regenerative Medicine in Bladder Reconstructive Surgery;European Urology Supplements;2017-01

5. Urologic Tissue Engineering and Regeneration;Translating Regenerative Medicine to the Clinic;2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3