Development of Acute Ischemic Heart Failure in Sheep

Author:

Mihaylov D.1,Reintke H.1,Blanksma P.2,De Jong E.D.1,Elstrodt J.1,Rakhorst G.1

Affiliation:

1. Department of BioMedical Engineering, University of Groningen, Groningen

2. Thoracic Center, University Hospital Groningen, Groningen - The Netherlands

Abstract

The goal of the present study was to develop a large animal model of acute ischemic left ventricular heart failure (LVHF) that can be used to assess the influence of the PUCA pump on the heart and circulatory system under realistic conditions. We tested the hypothesis that mild stenosis of the coronary artery in combination with mild ventricular pacing induces an acute heart failure condition, whereas the separate phenomena themselves do not lead to impaired heart function. Mean aortic pressure (AoP), left ventricular end-diastolic pressure (LVEDP), stroke volume (SV) and myocardial systolic shortening (MSS) were compared 30 minutes after a pacemaker (PM) induced tachycardia in anaesthetized sheep (n=3) without and with ± 50% stenosis of the proximal LCx. All parameters measured restored to basic levels when stenosis was absent. When the LCx was partially occluded, mild PM-induced tachycardia resulted in decreased AoP (P=0.045) as well as in decreased SV (P=0.048); the LVEDP remained high (P=0.002). Also the recovery of MSS was impaired when stenosis was present (P=0.002). These values indicate that acute heart failure conditions were present. The technique used proved to be safe and allowd fine-tuning of the demand ischemia by adapting heart frequency to the required heart failure conditions. The model can be used to study the effect of LV mechanical support during acute heart failure conditions.

Publisher

SAGE Publications

Subject

Biomedical Engineering,Biomaterials,General Medicine,Medicine (miscellaneous),Bioengineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3