Cell attachment effects of collagen nanoparticles on crosslinked electrospun nanofibers

Author:

Ziaei Amiri Fereshteh1,Pashandi Zaiddodine1,Lotfibakhshaiesh Nasrin2,Mirzaei-Parsa Mohamad Javad1,Ghanbari Hossein1,Faridi-Majidi Reza1ORCID

Affiliation:

1. Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran

2. Department of Tissue Engineering and Applied Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran

Abstract

Since collagen is naturally a main extracellular matrix protein, it has been applied widely in skin’s tissue engineering scaffolds to mimics the characteristics of extracellular matrix for proper transplantation of living cells. However, there are challenges that come with application of this natural polymer such as high solubility in aqueous environments which requires further consideration such as chemically cross-linking in order to stabilization. But these treatments also affect its functionality and finally cellular behaviors on scaffold. In this research we evaluated the suitability of collagen nanofibers versus collagen nanoparticles for cell adhesion and viability on glutaraldehyde cross-linked scaffolds. Appling a dual-pump electrospining machine a blend PCL-Gelatin from one side and collagen nanofibers or collagen nanoparticles from the other side were collected on the collector. The fabricated scaffolds were characterized by scanning electron microscopy, contact angle, and mechanical analysis. The cell viability, adhesion and morphology were studied respectively using MTT assay, hoechst staining and scanning electron microscopy. The results indicated significantly improvement of cell viability, adhesion and better spreading on scaffolds with collagen nanoparticles than collagen nanofibers. It seems changes in surface morphology, viscoelastic moduli and swelling ability following cross-linking with glutaraldehyde in scaffold with collagen nanoparticles are still favorable for cellular proliferation. Based on these results, in the case of glutaraldehyde cross-linking, application of collagen nanoparticles rather than collagen nanofibers in tissue regeneration scaffolds will better mimic the extracellular matrix characteristics; and preserve the viability and adhesion of seeded cells.

Funder

Tehran University of Medical Sciences and Health Services

Publisher

SAGE Publications

Subject

Biomedical Engineering,Biomaterials,General Medicine,Medicine (miscellaneous),Bioengineering

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3