Enhanced cellular functions of hepatocytes in the hyaluronate-alginate-chitosan microcapsules

Author:

Zhang Yanhong1,Lu Juan1,Li Zuhong1,Zhu Danhua1,Yu Xiaopeng1,Li Lanjuan1ORCID

Affiliation:

1. State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China

Abstract

The study aimed to develop a biocompatible microcapsule for hepatocytes and create a bio-mimic microenvironment for maintaining hepatic-specific functions of hepatocytes in vitro. The work is proposed for the bioartificial liver system in the treatment of liver failure. In this study, microcapsules were prepared with hyaluronate (HA)/sodium alginate (SA) as an inner core and an outer chitosan (CS) shell via one-step spraying method. C3A cells were encapsulated in microcapsules to examine the biocompatibility of HA-SA-CS microcapsules. MTT and fluorescence microscopy indicated that C3A cells had high viability in the HA-SA-CS microcapsules. The liver-specific functions, such as urea and albumin synthesis, and CYP1A2 and CYP3A4 activities from encapsulated cells were increased in the HA-SA-CS microcapsules compared to the SA-CS microcapsules. The gene expressions of CYP450 related genes were also increased by HA on day 3. The study suggests that HA-SA-CS microcapsules have good biocompatibility and can maintain a favorable environment for hepatocytes. This approach has improved the preservation of liver cells’ metabolic functions and could be a candidate for the bioartificial liver system.

Funder

natural science foundation of zhejiang province

Publisher

SAGE Publications

Subject

Biomedical Engineering,Biomaterials,General Medicine,Medicine (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3