A Miniaturized Nafion-Based Glucose Sensor: in vitro and in vivo evaluation in dogs

Author:

Moussy F.12,Harrison D.J.1,Rajotte R.V.2

Affiliation:

1. Department of Chemistry, University of Alberta, Edmonton, Alberta

2. Surgical-Medical Research Institute, University of Alberta, Edmonton, Alberta - Canada

Abstract

We have developed an implantable glucose sensor based on a new tri-layer membrane configuration. The needle-type sensor integrates a Pt working electrode and a Ag/AgCI reference electrode. Its size is equivalent to a 25 gauge needle (0.5 mm in diamater). Poly (o-phenylenediamine) was used as an inner coating to reduce interference by small compounds present in the body fluids, and the perfluorinated ionomer, Nation as a biocompatible, protective, outer coating. Glucose oxidase trapped in an albumin/glutaraldehyde matrix was sandwiched between these coatings. In vitro tests in buffer showed the sensors had a good selectively, a sensitivity of about 25 nA/mM, and a 90% response time of 33 s. Stabilization of the current following polarization required 10 to 30 min in vitro and 30 to 40 in vivo. Although these sensors remained stable for many weeks in saline solution, their implantation in animals resulted in the degradation of the protective Nation outer coating, which in turn, led to the failure of the incorporated reference electrode. We demonstrated that if unprotected, the AgCI layer of the reference electrode rapidly dissolves in the biological environment. However, we later showed that in vivo degradation of Nation can be prevented by heat curing. When heat cured sensors were subcutaneously implanted in dogs, the sensors' signal closely followed the plasma glucose level during glucose tolerance tests. The response of the sensors implanted in dogs was retained for 10 days.

Publisher

SAGE Publications

Subject

Biomedical Engineering,Biomaterials,General Medicine,Medicine (miscellaneous),Bioengineering

Cited by 64 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3