The use of a virtual patient to follow changes in arterial blood gases associated with therapeutic thoracentesis

Author:

Stecka Anna M1,Gólczewski Tomasz1,Grabczak Elżbieta M2,Zieliński Krzysztof1,Michnikowski Marcin1,Zielińska-Krawczyk Monika2,Korczyński Piotr2,Krenke Rafał2

Affiliation:

1. Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Warsaw, Poland

2. Department of Internal Medicine, Pulmonary Diseases & Allergy, Medical University of Warsaw, Warsaw, Poland

Abstract

Purposes: Some controversies exist on the effect of therapeutic thoracentesis (TT) on arterial blood oxygen tension. The aim of this study was to evaluate this issue using a previously developed virtual patient. Methods: The analysis was based and supported by clinical data collected during 36 TT. Pleural pressure and transcutaneous oxygen and carbon dioxide pressures (PtcO2 and PtcCO2) were measured during pleural fluid withdrawal. Arterial blood oxygen tension and arterial CO2 tension (PaO2 and PaCO2) were analysed in simulations that mimicked TT. Minute ventilation was adjusted to maintain arterial CO2 tension at a constant level unless arterial blood oxygen tension fell below 8 kPa. Specifically, the influence of hypoxic pulmonary vasoconstriction efficiency was tested. Results: In patients, PtcCO2 remained at an approximately constant level (average amplitude: 0.63 ± 0.29 kPa), while some fluctuations of PtcO2 were observed (amplitude: (1.65 ± 1.18 kPa) were observed. In 42% of patients, TT was associated with decrease in PtcCO2. Simulations showed the following: (a) there were similar PaO2 fluctuations in the virtual patient; (b) the lower the hypoxic pulmonary vasoconstriction efficiency, the more pronounced the PaO2 fall during fluid withdrawal; and (c) the lower the atelectatic lung areas recruitment rate, the slower the PaO2 normalization. The decrease in PaO2 was caused by an increase of pulmonary shunt. Conclusion: Therapeutic thoracentesis may cause both an increase and a decrease in PaO2 during the procedure. Pleural pressure decrease, caused by pleural fluid withdrawal, improves the perfusion of atelectatic lung areas. If the rate of recruitment of these areas is low, a lack of ventilation causes the arterial blood oxygen tension to fall. Effective hypoxic pulmonary vasoconstriction may protect against the pulmonary shunt.

Publisher

SAGE Publications

Subject

Biomedical Engineering,Biomaterials,General Medicine,Medicine (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3