Shock Wave Therapy as an Innovative Technology in Skeletal Disorders: Study on Transmembrane Current in Stimulated Osteoblast-Like Cells

Author:

Martini L.1,Giavaresi G.1,Fini M.1,Torricelli P.1,Borsari V.1,Giardino R.12,De Pretto M.3,Remondini D.45,Castellani G.C.45

Affiliation:

1. Experimental Surgery Department, Research Institute Codivilla-Putti, Rizzoli Orthopedic Institute, Bologna - Italy

2. Chair of Surgical Pathophysiology, Department of Clinical Medicine and Applied Biotechnology “D. Campanacci” University of Bologna - Italy

3. Casa di Cura “Villa Maria”, Bologna - Italy

4. DIMORFIPA and Galvani Center (CIG), University of Bologna, Bologna - Italy

5. Physics Department, University of Bologna, Bologna - Italy

Abstract

Extracorporeal shock wave treatment (ESWT) is successfully used in various musculoskeletal disorders and pathologies. Despite the increasing use of this kind of therapy, some aspects of its mechanism of action are still unclear. In vitro bone cell behavior under ESWT were previously investigated by the present author and MG63 osteoblast-like cells showed an enhancement in proliferation and in the osteoblast differentiation after therapy with a low-energy flux density. The aim of the present study was to evaluate the effect of ESWT on the permeabilization of cell membrane. We characterized physiological changes in the MG63 associated with ESWT generated by an ESW device and patch clamp recording was performed to study ion channels. Experiments were carried out using the whole-cell recording configuration of the patch-clamp technique and the ionic current measurements were performed on cell samples of ESW treated and control groups. The patch-clamp technique showed the effect of ESWT on the amplitude of transmembrane currents. The treatment with ESW enhanced the transmembrane current as well the voltage dependence of Ca-activated and K channels that mediate these currents: the differences between treated cells and control at 80mV were over 1000 pA (P<0.05). These modifications of ion channels activity positively influence cell proliferation (MTT test, P<0.0001) without interfering with the normal synthesis activity of stimulated osteoblasts.

Publisher

SAGE Publications

Subject

Biomedical Engineering,Biomaterials,General Medicine,Medicine (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3