Affiliation:
1. University of Applied Sciences Giessen-Friedberg, Institute of Biopharmaceutical Technology, Giessen - Germany
2. Martin Christ Gefriertrocknungsanlagen GmbH, Osterode am Harz - Germany
3. CellMed AG, Alzenau - Germany
4. Department of Chemical Engineering, Kansas State University, Manhattan, Kansas - USA
Abstract
Human mesenchymal stem cells (hMSCs) have some favorable characteristics like high plasticity, multilineage differentiation potential, and comparably easy handling in vitro, making them of interest for many clinical and therapeutic approaches including cell therapy. For routine applications, these cells have to be stored over a certain period of time without loss of cell vitality and function. An easy way to preserve cells is to store them at temperatures between -80°C and -196°C (liquid nitrogen). To prevent cells from the damage caused by the cryopreservation process and to achieve high cell recovery and vitality, cryoprotectants are used. Typically dimethylsulfoxide, often in combination with serum, is used as a cryoprotectant. However, for clinical approaches, the use of dimethylsulfoxide and serum in patients is problematic for several reasons. Therefore, the cryopreservation of human mesenchymal stem cells for cell therapeutic applications without dimethylsulfoxide and serum demands investigation. In this work, non-toxic alternatives to dimethylsulfoxide such as glycerol or the compatible solutes, proline and ectoin, were analyzed in a serum-free cryomedium with respect to their cryoprotective properties. Different concentrations of the cryoprotectants (1–10% (w/v) ectoin or proline, respectively, or 5–20% (v/v) glycerol) and certain incubation times (0–60 minutes) were investigated with regard to post-thaw cell vitality and cell growth. Our results showed that, in general, cryopreservation with ectoin led to high post-thaw cell survival of up to 72% whereas after cryopreservation with glycerol and proline, the hMSC cells were completely dead (glycerol) or had only poor cell survival (proline, 22%). Moreover, the morphology of the hMSC cells changed to a large and flat phenotype after cryopreservation with proline. These results indicate that glycerol and proline are not suitable for cryopreservation of hMSC. In contrast, ectoin has the potential to replace dimethylsulfoxide as a cryoprotectant in a serum-free cryomedium.
Subject
Biomedical Engineering,Biomaterials,General Medicine,Medicine (miscellaneous),Bioengineering
Cited by
43 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献