Morphological Analysis of in Vivo Velocity Field in the Alteration of the Vasomotor Tone

Author:

Grigioni M.1,Daniele C.1,Morbiducci U.1,D'avenio G.1,Di Benedetto G.1,Barbaro V.1

Affiliation:

1. Laboratory of Biomedical Engineering, Istituto Superiore di Sanità, Rome - Italy

Abstract

Vessel wall remodeling is involved in atherogenesis and in several important vascular diseases affecting mainly aged and prosthetic implanted patients. This adaptive response to pathological states in arterial hemodynamics strongly suggests that flow-derived stresses act as mechanical stimuli to the release of endothelium-derived vasoactive factors, leading to vascular alterations. As the correlation of intimal hyperplasia (IH) with blood flow alterations in arteries has been shown to be significant, and as it is well-known that clinical procedures carry a substantial risk of development of vascular disease, the relevance of local hemodynamics must be investigated to describe changes in compliance matching in prosthetic applications. The aim of our research is to investigate the use of principal components analysis, together with varimax rotation, in the individuation process of morphological characteristics of real time ultrasound in in vivo recordings of blood flow velocities, as provided by two different carotid perivascular manipulations. This would be of use in the clinical assessment of atherogenesis, hypertension, prosthetic replacement or more in general in all applications in which vascular tone may be impaired. Data recordings refer to previous animal experiments where the Moncada model was investigated by means of an ultrasound profilometer. The present study confirms the feasibility of the proposed analysis to follow vascular pathology evolution, distiguishing between an in progress and a static situation.

Publisher

SAGE Publications

Subject

Biomedical Engineering,Biomaterials,General Medicine,Medicine (miscellaneous),Bioengineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3