Use of a Virtual Mock Loop model to evaluate a new left ventricular assist device for transapical insertion

Author:

Kado Yuichiro1ORCID,Smith William A2,Miyamoto Takuma1,Adams Joseph1,Polakowski Anthony R1,Dessoffy Raymond1,Horvath David J3,Fukamachi Kiyotaka1,Karimov Jamshid H1

Affiliation:

1. Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA

2. Perfusion Solution, Inc., South Euclid, OH, USA

3. R1 Engineering, Euclid, OH, USA

Abstract

We are developing a novel type of miniaturized left ventricular assist device that is configured for transapical insertion. The aim of this study was to assess the performance and function of a new pump by using a Virtual Mock Loop system for device characterization and mapping. The results, such as pressure-flow performance curves, from pump testing in a physical mock circulatory loop were used to analyze its function as a left ventricular assist device. The Virtual Mock Loop system was programmed to mimic the normal heart condition, systolic heart failure, diastolic heart failure, and both systolic and diastolic heart failure, and to provide hemodynamic pressure values before and after the activation of several left ventricular assist device pump speeds (12,000, 14,000, and 16,000 r/min). With pump support, systemic flow and mean aortic pressure increased, and mean left atrial pressure and pulmonary artery pressure decreased for all heart conditions. Regarding high pump-speed support, the systemic flow, aortic pressure, left atrial pressure, and pulmonary artery pressure returned to the level of the normal heart condition. Based on the test results from the Virtual Mock Loop system, the new left ventricular assist device for transapical insertion may be able to ease the symptoms of patients with various types of heart failure. The Virtual Mock Loop system could be helpful to assess pump performance before in vitro bench testing.

Funder

National Heart, Lung, and Blood Institute

Publisher

SAGE Publications

Subject

Biomedical Engineering,Biomaterials,General Medicine,Medicine (miscellaneous),Bioengineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3