Design and realization of a normothermic perfusion system for laboratory tests on pig liver

Author:

Mazzantini Lucrezia1ORCID,Dimitri Mattia1,Staderini Fabio2,Cianchi Fabio2,Corvi Andrea1

Affiliation:

1. Department of Industrial Engineering, University of Florence, Firenze, Italy

2. Department of Surgery and Translational Medicine, University of Florence, Firenze, Italy

Abstract

Ex vivo testing is a fundamental step in the development of new medical devices; indeed without it, it is impossible to proceed with in vivo tests. At the University of Florence, a robotic tool for microwave thermal ablation is under development. Up to now, the thermoablation tests for the validation of the tool were carried out on non-perfused ex vivo livers, providing results that inevitably differ from those obtainable with an in vivo liver. The aim is to design, and consequently create, a compact and transportable system which allows to perfuse a swine liver with physiological solution and heparin. This device should also allow the organ to be transported from the explantation place to the laboratory, keeping it under normothermal condition. The perfusor was designed to simulate the physiological flow within the liver in the most realistic way possible. The design, construction, and optimization of the perfusor have been addressed using the physiological values of hepatic flow and pressure identified in the literature, neglecting in the first instance any load losses. Therefore, open circuit tests were conducted, validated through perfusion tests on freshly explanted pig liver; during these tests, the surface temperature of the organ was recorded using an infrared camera, and the fluid temperature was verified using an immersion probe. The perfusion test showed a good alignment with the open circuit tests, demonstrating the validity of the simplifications adopted to treat the complex vascular structure of the liver.

Publisher

SAGE Publications

Subject

Biomedical Engineering,Biomaterials,General Medicine,Medicine (miscellaneous),Bioengineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3