Measurement of Oxygen Consumption and Arterial-Venous Oxygen Saturation following Total Artificial Heart Implantation

Author:

Robison P.D.1,Pantalos G.M.1,Long J.W.1,Bliss R.S.1,Price D.K.1,Everett S.D.1,Goldman P.1,Goldenberg I.2,Olsen D.B.1

Affiliation:

1. Artificial Heart Research Laboratory, Institute for Biomedical Engineering, University of Utah, Salt Lake City, Utah

2. Minneapolis Heart Institute Foundation, Minneapolis, Minnesota - USA

Abstract

Current algorithms for control of the total artificial heart are directed at maintaining hemodynamic homeostasis. Future control systems will also need to modify cardiac output in response to metabolic needs. This study was undertaken to evaluate oxygen metabolism monitoring as an indicator of the adequacy of organ and tissue perfusion. Following recovery from implantation of the Utah-100 pneumatic total artificial hearts, five calves (85 to 95 kg) underwent placement of fiberoptic oxymetry catheters to determine mixed venous and arterial oxygen saturations. By continuously measuring oxygen consumption with a gas analyzer, oxygen utilization and delivery were determined. In the awake calves, at-rest cardiac output was varied to produce hyperperfused and hypoperfused conditions while the adequacy of tissue perfusion was assessed with continuous mixed venous oxymetry and confirmed with serum lactate (Lact) levels. Inadequate tissue perfusion (Lact > 1.0 mmol/L) was evidenced by a mixed venous oxygen saturation <40%, oxygen delivery of < 200.0 milliliters/minute/m2), and oxygen delivery to utilization ratio of < 1.8 during the hypoperfusion conditions of the experiment. By accounting for oxygen consumption, the ratio of oxygen delivery to oxygen utilization was predictive of the adequacy of tissue perfusion. These results suggest that continuous oxygen metabolism monitoring may be useful as a physiologic control modifier to maintain total artificial heart output sufficient to meet physiologic needs, while avoiding hyperperfusion, unnecessary wear and deterioration of the implanted device due to excessive heart rates.

Publisher

SAGE Publications

Subject

Biomedical Engineering,Biomaterials,General Medicine,Medicine (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3