Validity of the hydrogen ion mobilisation model during haemodialysis with time-dependent dialysate bicarbonate concentrations

Author:

Leypoldt John Kenneth1ORCID,Pietribiasi Mauro1,Debowska Malgorzata1,Wieliczko Monika2,Twardowska-Kawalec Malgorzata2,Malyszko Jolanta2,Waniewski Jacek1

Affiliation:

1. Nalecz Institute of Biocybernetics and Biomedical Engineering Polish Academy of Sciences, Poland

2. Medical University of Warsaw, Warsaw, Poland

Abstract

Background: The hydrogen ion (H+) mobilisation model has been previously shown to accurately describe blood bicarbonate (HCO3) kinetics during haemodialysis (HD) when the dialysate bicarbonate concentration ([HCO3]) is constant throughout the treatment. This study evaluated the ability of the H+ mobilization model to describe blood HCO3 kinetics during HD treatments with a time-dependent dialysate [HCO3]. Methods: Data from a recent clinical study where blood [HCO3] was measured at the beginning of and every hour during 4-h treatments in 20 chronic, thrice-weekly HD patients with a constant (Treatment A), decreasing (Treatment B) and increasing (Treatment C) dialysate [HCO3] were evaluated. The H+ mobilization model was used to determine the model parameter (Hm) that provided the best fit of the model to the clinical data using nonlinear regression. A total of 114 HD treatments provided individual estimates of Hm. Results: Mean ± standard deviation estimates of Hm during Treatments A, B and C were 0.153 ± 0.069, 0.180 ± 0.109 and 0.205 ± 0.141 L/min (medians [interquartile ranges] were 0.145 [0.118,0.191], 0.159 [0.112,0.209], 0.169 [0.115,0.236] L/min), respectively; these estimates were not different from each other ( p = 0.26). The sum of squared differences between the measured blood [HCO3] and that predicted by the model were not different during Treatments A, B and C ( p = 0.50), suggesting a similar degree of model fit to the data. Conclusions: This study supports the validity of the H+ mobilization model to describe intradialysis blood HCO3 kinetics during HD with a constant Hm value when using a time-dependent dialysate [HCO3].

Funder

Polish National Science Center

Publisher

SAGE Publications

Subject

Biomedical Engineering,Biomaterials,General Medicine,Medicine (miscellaneous),Bioengineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3