Massive Pulmonary Infarction during Total Cardiopulmonary Bypass in Unanesthetized Spontaneously Breathing Lambs

Author:

Kolobow T.1,Spragg R.G.2,Pierce J.E.3

Affiliation:

1. Laboratory of Technical Development National Heart, Lung, and Blood Institute Building 10, Room 5D-20, Bethesda, MD 20205

2. Present Address: Pulmonary Division University of California, San Diego, California

3. Laboratory Animal Medicine and Surgery Section National Heart, Lung, and Blood Institute Bethesda, MD 20205

Abstract

We provided total cardiopulmonary support for 1-18 hours in unanesthetized tethered lambs by peripheral vascular cannulation, using a roller pump and the spiral membrane lung. Respirations were allowed to remain spontaneous and unaided. A Swan-Ganz catheter was placed for retrograde pulmonary artery blood flow sampling. Within a few minutes following induced ventricular fibrillation the PCO2 of sampled blood flowing retrograde through the lungs fell below 10 mm Hg, the PO2 rose to near 150 mm Hg, the pH rose to above 7.8, and the glucose level fell to less than 20 mg %. All of these values later gradually shifted, approaching mixed venous blood values within minutes. After 1-18 hrs of perfusion the animals went into shock and were sacrificed. At autopsy, the lungs of animals breathing room air were beefy and hemorrhagic. In lambs that were «breathing» CO2 enriched air the retrograde pulmonary artery blood pH and PCO2 was usually maintained close to the mixed venous blood values. The observed pulmonary changes were considerably less abnormal, and the microscopic abnormalities were at times nonexistent. We believe the integrity of pulmonary blood flow is vital to the survival of the lungs as a functioning organ. Cessation of total forward pulmonary blood flow (unlike partial cardiopulmonary bypass), combined with spontaneous pulmonary ventilation, rapidly leads to massive, pulmonary infactions, shock, and death.

Publisher

SAGE Publications

Subject

Biomedical Engineering,Biomaterials,General Medicine,Medicine (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3