Simulation and experimental investigation of the surgical needle deflection model during the rotational and steady insertion process

Author:

Barua Ranjit1ORCID,Das Surajit2,RoyChowdhury Amit1,Datta Pallab3

Affiliation:

1. Indian Institute of Engineering Science and Technology, Shibpur, Howrah, West Bengal, India

2. R. G Kar Medical College and Hospital, Kolkata, West Bengal, India

3. National Institute of Pharmaceutical Education and Research-Kolkata, West Bengal, India

Abstract

Needle insertion is executed in numerous medical and brachytherapy events. Exact needle insertion into inhomogeneous soft biological tissue is of useful importance due to its significance in clinical diagnosis (especially percutaneous) and treatments. The surgical needles used in such processes can deflect during the percutaneous process. Needle deflecting which affects needle — soft tissue interface and needle controllability have a crucial role in establishment precision. In this paper, we have analyzed a mechanics-based model both rotational and non-rotational needle insertion, and studied the deflection phenomenon in both insertion cases, we validated it with a real-time nonlinear Dassault Systèmes® ABAQUS simulation model. For definite contact force, the maximum the contact stiffness was, the minimum it inserted, the cohesive surface model was used to investigate the needle insertion analysis, where the fracture point was defined by a failure strain and with the help of the in, the fully failed components would be removed. Using living tissue comparable PVA gel materials, the needle insertion force model is developed from insertion experimentations with the help of two different processes (rotational and non-rotational needle insertion). In a rotational needle, deflection is less than in a non-rotational needle. The preliminary insertion was observed in the rotational needle at 1.261 mm (experiment), and 1.538 mm (simulation), and for non-rotational needle insertion, the initial insertion was noticed at 1.756 mm (experiment) and 1.982 mm (simulation). The main aim of this study is to navigate the surgical needle in an accurate way to reduce the erroneousness for a clinical diagnosis like anesthesia, brachytherapy, biopsy, and modern microsurgery operation.

Publisher

SAGE Publications

Subject

Biomedical Engineering,Biomaterials,General Medicine,Medicine (miscellaneous),Bioengineering

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Advanced Biomimetic Compound Continuum Robot for Minimally Invasive Surgical Applications;Advances in Computational Intelligence and Robotics;2024-05-23

2. An In-Depth Exploration of AI and Humanoid Robotics' Role in Contemporary Healthcare;Advances in Medical Technologies and Clinical Practice;2024-05-10

3. An Investigation of AI Techniques for Detecting Kidney Stones in CT Scan Images Through Advanced Image Processing;Advances in Medical Technologies and Clinical Practice;2024-04-15

4. Innovations in Minimally Invasive Surgery;Advances in Healthcare Information Systems and Administration;2024-02-23

5. The Emerging Potential of 21st Century Bio-Inspired Swarm Robotics in Modern Medical Surgery;Advances in Computational Intelligence and Robotics;2024-02-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3