Affiliation:
1. School of Mechanical and Electrical Engineering, Central South University, Changsha, Hunan, China
2. College of Mechanical Engineering, Hunan University of Arts and Science, Changde, Hunan, China
Abstract
Aiming at insufficient suspension force on the impeller when the hydraulic suspension axial flow blood pump is start at low speed, the impeller suspension stability is poor, and can’t quickly enter the suspended working state. By establishing the mathematical model of the suspension force on the impeller, then the influence of the circumferential groove depth of the impeller on the suspension force is analyzed, and the annular groove depth on the impeller blade in the direction of fluid inlet and outlet was determined as (0.26, 0.02 mm). When the blood pump starts, there is an eccentricity between the impeller and the pump tube, the relationship between the suspension force and the speed of the impeller under different eccentricities is analyzed. Combined with the prototype experiment, the circumferential annular grooving design of the impeller can make the blood pump rotate at about 3500 rpm into the suspension state, when the impeller is at 8000 rpm, the impeller can basically achieve stable suspension at the eccentricity of 0.1 mm in the gravity direction, indicating that the reasonable circumferential annular grooving design of the impeller can effectively improve the suspension hydraulic force of the impeller and improve the stability of the hydraulic suspension axial flow blood pump.
Funder
national natural science foundation of china
natural science foundation of hunan province
Subject
Biomedical Engineering,Biomaterials,General Medicine,Medicine (miscellaneous),Bioengineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献