Intraventricular flow visualization in different heart failure stages with blood pump support in a mock circulatory loop

Author:

Liu Guang-Mao1ORCID,Jiang Fu-Qing12,Song Jiang-Ping12,Hu Sheng-Shou12

Affiliation:

1. State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China

2. Department of Adult Cardiac Surgery, Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen, China

Abstract

The intraventricular blood flow changed by blood pump flow dynamics may correlate with thrombosis and ventricular suction. The flow velocity, distribution of streamlines, vorticity, and standard deviation of velocity inside a left ventricle failing to different extents throughout the cardiac cycle when supported by an axial blood pump were measured by particle image velocimetry (PIV) in this study. The results show slower and static flow velocities existed in the central region of the left ventricle near the mitral valve and aortic valve and that were not sensitive to left ventricular (LV) failure degree or LV pressure. Strong vorticity located near the inner LV wall around the LV apex and the blood pump inlet was not sensitive to LV failure degree or LV pressure. Higher standard deviation of the blood velocity at the blood pump inlet decreased with increasing LV failure degree, whereas the standard deviation of the velocity near the atrium increased with increasing intraventricular pressure. The experimental results demonstrated that the risk of thrombosis inside the failing left ventricle is not related to heart failure degree. The “washout” performance of the strong vorticity near the inner LV wall could reduce the thrombotic potential inside the left ventricle and was not related to heart failure degree. The vorticity near the aortic valve was sensitive to LV failure degree but not to LV pressure. We concluded that the risk of blood damage caused by adverse flow inside the left ventricle decreased with increasing LV pressure.

Funder

beijing science and technology planning project

the Program for Guangdong Introducing Innovative and Enterpreneurial Teams

Publisher

SAGE Publications

Subject

Biomedical Engineering,Biomaterials,General Medicine,Medicine (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3