Flexible inner surface of polysulfone membranes prevents platelet adhesive protein adsorption and improves antithrombogenicity in vitro

Author:

Takatsuji Ryo1,Koremoto Masahide1ORCID,Fujimoto Yoko1,Saida Yuko1,Hatanaka Yoshihiro1

Affiliation:

1. Asahi Kasei Medical Co., Ltd., Japan

Abstract

Background: We investigated whether the condition of the inner surface of hollow fibers affects the blood compatibility of hemodialyzers. Methods: We used scanning probe microscope/atomic force microscopy (SPM/AFM) to investigate the height of the swelling and flexible layers (thickness and softness) on the inner surfaces of the hollow fibers. Next, we tested the blood compatibility between dialyzers comprising a hollow fiber membrane, in which the other dialyzers, except for PVP, were additionally coated using PS membranes coated with other materials. After blood was injected into the dialyzer and plugged, dynamic stimulation was performed by slightly rotating the dialyzer for 4 h, although there was no blood circulation. Results: The vitamin E-coated polysulfone (PS) membrane showed a higher thickness and softness of the flexible layer than the asymmetric cellulose triacetate membrane without polyvinylpyrrolidone (PVP) and the PS membranes with PVP. We found that the dialyzer with vitamin E coating significantly suppressed the decrease in platelets, increase in β-TG, and increase in PF4 compared to those coated with NV polymer. Additionally, as the adsorbed protein on the inner surface, the total protein, fibronectin, and vWF levels were significantly lower in the vitamin E-coated dialyzer. Conclusion: The thickness and softness of the flexible layer of the inner surface of the hollow fiber membrane in vitro affect differences in blood coagulation performance in clinical research. Future clinical trials are required to confirm our results.

Funder

Asahi Kasei Medical Co. LTD.,

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3