Applicability of modified carbon sorbent for removing potentially toxic biologically active molecules of aromatic structure from blood plasma

Author:

Getsina Maria1ORCID,P’yanova Lidia2,Kornienko Natalia2,Lavrenov Alexander2,Ershov Anton1,Beloborodova Natalia1

Affiliation:

1. Laboratory of Human Metabolism in Critical States, Negovsky Research Institute of General Reanimatology, Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, Moscow, Russian Federation

2. Center of New Chemical Technologies of the Federal Research Center Boreskov Institute of Catalysis of Siberian Branch of the Russian Academy of Sciences, Omsk, Russian Federation

Abstract

The modification of the mesoporous carbon sorbent with 3-phenylpropanoic acid was carried out in order to create preparations of complex, prolonged action, exhibiting detoxifying, antibacterial, and antifungal properties due to the applied modifier, which is capable of migrating into the solution and exhibiting its own biospecific properties. A technique was developed for fixing 3-phenylpropionic acid (PhPA) on a carbon support by its adsorption from solution. Three types of sorbents with various content of the modifier (PhPA) and the sorbent without modifier were studied. The sorption activity of new sorbents was studied using liquid-liquid extraction and gas chromatography-mass spectrometry methods on model experiments with plasma and aqueous additives of hydroxylated phenyl-containing acids (PhCAs) in various concentrations. The specific surface area was significantly changed for sorbent, modified with 1 × 10−3 mol/L of PhPA solution, and was 25% less than the area of unmodified sorbent. Potentially toxic biologically active hydroxylated PhCAs were used to create model solutions. The degrees of sorption of these compounds were close to 100%, except phenyllactic acid (over 80%). The sorbent without modifier and two sorbents with the lowest content of the modifier are considered to be more effective for the purification of the plasma from the hydroxylated PhCAs than the sorbent with the highest concentration of the modifier. Simultaneous adsorption of toxic metabolites from the bloodstream and desorption of beneficial ones can be used for a more subtle correction of the patient’s condition.

Publisher

SAGE Publications

Subject

Biomedical Engineering,Biomaterials,General Medicine,Medicine (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3