In Vitro and in vivo Behaviour of Biodegradable and Injectable PLA/PGA Copolymers Related to Different Matrices

Author:

Tschon M.1,Fini M.1,Giavaresi G.1,Torricelli P.1,Rimondini L.1,Ambrosio L.2,Giardino R.13

Affiliation:

1. Experimental Surgery Department, “Codivilla-Putti” Research Institute, Rizzoli Orthopedic Institute, Bologna - Italy

2. Institute for Composite and Biomedical Materials, National Research Council, Naples - Italy

3. Chair of Surgical Pathophysiology, University of Bologna, Bologna - Italy

Abstract

This study comparatively investigates the in vitro and in vivo behavior of injectable polymeric materials for the treatment of bone defects. The tested materials were three injectable and biodegradable PLA/PGA 50/50 copolymers dispersed in different matrices: Fisograft-gel (GEL) was dispersed in an aqueous matrix of poly-ethyl-glycole (PEG); Slurry2 (SL2) was dispersed in an aqueous matrix of PEG and dextran; and Slurry6 (SL6) was dispersed in a 3% agarose matrix. The biological characterization of these materials was studied by in vitro and in vivo tests: the in vitro test assessed the cellular response in terms of viability, differentiation and synthetic activity, while the in vivo test evaluated the healing capacity of bone defects treated with these biomaterials. GEL and SL2 induced a similar response for viability and differentiation of MG63 osteoblast-like cells after a 7-day culture, while SL6 caused a higher production of both interleukin-6 and type I collagen. Since the results showed that the materials were biocompatible and not cytotoxic in vitro, the in vivo study was carried out: materials were implanted, under general anesthesia, in critical size defects of rabbit femoral condyles; after 4 and 12 weeks, the healing rates and the quality of the regenerated bone were histomorphometrically calculated. The SL2-treated defects healed better at 12 weeks with a more similar microarchitecture of the newly formed bone to normal bone in comparison with other materials, as demonstrated by bone volume fraction and trabecular thickness values.

Publisher

SAGE Publications

Subject

Biomedical Engineering,Biomaterials,General Medicine,Medicine (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3