Intervertebral Disc Regeneration: Influence of Growth Factors on Differentiation of Human Mesenchymal Stem Cells (hMSC)

Author:

Ehlicke Franziska1,Freimark Denise1,Heil Birthe1,Dorresteijn Adriaan2,Czermak Peter13

Affiliation:

1. Institute of Biopharmaceutical Technology, University of Applied Sciences Giessen-Friedberg, Giessen - Germany

2. Institute of Zoology, University of Giessen, Giessen - Germany

3. Department of Chemical Engineering, Kansas State University, Manhattan, Kansas - USA

Abstract

Introduction One common cause of disability in modern society is low back pain. The main reason for this pain is the degeneration of the intervertebral disc (IVD), particularly of the nucleus pulposus (NP). For the early degeneration stage, a cell-based therapy could constitute a minimally invasive method of treatment. Therefore, adequate cells are needed. As the usage of NP cells is limited because of their insufficient amount or vitality, a promising alternative is the application of human mesenchymal stem cells (hMSCs). Objective To investigate the potential of various growth factors to induce the differentiation of hMSCs into NP cells and thereby to obtain an alternative cell source for the treatment of IVD degeneration. Methods hMSC-TERT were cultivated three-dimensionally in a hydrogel for 21 days to form NP cells. Cell survival and proliferation were determined using SybrGreen/propidium iodide double staining and the WST-test. To investigate the ability of several growth factors to differentiate hMSCs into NP cells, fluorescence immunostaining of NP-specific marker proteins (e.g., chondroadherin (CHAD) and the recently discovered cytokeratin 19) were performed. Results Following the procedure described above, cells are able to maintain their viability and proliferation capacity throughout the cultivation time. By using a previously established immunofluorescence protocol, we were able to indicate the ability of three different growth factors for differentiating hMSCs into NP-like cells. Conclusion The expression of several marker proteins in all differentiation experiments indicates the ability of IGF-1, FGF-2 and PDGF-BB to differentiate hMSCs into NP-like cells apart from the usually applied TGF-β3. Furthermore, our findings preclude the application of Cytokeratin 19 as a specific marker protein for NP cells. Further experiments have to be done to find real specific NP marker proteins to indisputably verify the differentiation of hMSCs into NP cells. If so, application of these three growth factors would possibly be an option to obtain sufficient NP cells for minimally invasive IVD regeneration.

Publisher

SAGE Publications

Subject

Biomedical Engineering,Biomaterials,General Medicine,Medicine (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3