Raman Spectroscopy as a Tool for Quality and Sterility Analysis for Tissue Engineering Applications like Cartilage Transplants

Author:

Pudlas Marieke12,Koch Steffen12,Bolwien Carsten3,Walles Heike1

Affiliation:

1. Fraunhofer Institute for Interfacial Engineering and Biotechnology, Stuttgart - Germany

2. University of Stuttgart, Medical Interfacial Engineering, Stuttgart - Germany

3. Fraunhofer Institute for Physical Measurement Techniques, Freiburg - Germany

Abstract

At present, the production of tissue engineered cartilage requires the concurrent production of two identical transplants. One transplant is used for destructive quality control and the second one is implanted into the patient. A non-invasive characterization of such tissue engineering samples would be a promising tool to achieve a production process of just one transplant that is both implanted and tested. Raman spectroscopy is a method that satisfies this requirement by analyzing cells without lysis, fixation or the use of any chemicals. This pure optical technique is based on inelastic scattering of laser photons by molecular vibrations of biopolymers. Characteristic peaks in Raman spectra of cells could be assigned to typical biochemical molecules present in biological samples. For the analysis of chondrocytes present in cartilage transplants, the determination of the cell vitality as well as the discrimination of another cell type have been studied by Raman spectroscopy. Another bottleneck in such biological processes under GMP conditions is sterility control, as most of the commonly used methods require long cultivation times. Raman spectroscopy provides a good alternative to conventional methods in terms of time saving. In this study, the potential of Raman spectroscopy as a quality and sterility control tool for tissue engineering applications was studied by analyzing and comparing the spectra of cell and bacteria cultures.

Publisher

SAGE Publications

Subject

Biomedical Engineering,Biomaterials,General Medicine,Medicine (miscellaneous),Bioengineering

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3