Efficacy and safety of a novel hemostatic material, BoneStat, compared with Ostene and Bone Wax in a rat calvarial defect model

Author:

Choi Seon Young12ORCID,Rhim Jiheon2,Heo Seon A2,Han Woo-Jung2,Kim Myung Hee2,Ha Chul-Won123

Affiliation:

1. Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, 06355, Korea

2. Stem Cell & Regenerative Medicine Research Institute, Samsung Medical Center, Gangnam-Gu, Seoul, South Korea

3. Department of Orthopedic Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea

Abstract

Hemostasis has critical significance during surgical procedures. Bone Wax has traditionally been commonly used for bone hemostasis despite well-documented undesirable side effects: hindering osteogenesis and induction of inflammatory reactions with consequent increase in infection rates. A later developed formulation, Ostene, offers an alternative to Bone Wax with lesser undesired effects. In this study, BoneStat, a newly developed bone hemostatic formulation comprising water-soluble alkylene oxide co-polymers, was evaluated for water solubility, hemostatic efficacy, ease of handling, bone healing efficacy, and inflammatory reactions compared with Bone Wax and Ostene in a rat calvarial defect model. More than 95% of BoneStat was dissolved in water within 48 h, as was Ostene, but not Bone Wax. The time to hemostasis using BoneStat was significantly faster than with Ostene or Bone Wax. BoneStat also improved ease of handling compared to Ostene or BoneWax. BoneStat- and Ostene-treated groups constantly showed better bone healing than with Bone Wax. The BoneStat and Ostene groups presented no evidence of chronic inflammation reaction contrary to Bone Wax. These results suggest improved hemostasis, ease of handling, non-hindering bone healing, and unnoticeable chronic inflammatory reactions with BoneStat. Thus, Bonestat is a useful and reliable formulation for mechanical hemostasis.

Publisher

SAGE Publications

Subject

Biomedical Engineering,Biomaterials,General Medicine,Medicine (miscellaneous),Bioengineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3