Effects of Rapamycin on the Epithelial-to-mesenchymal Transition of Human Peritoneal Mesothelial Cells

Author:

Aguilera A.1,Aroeira L.S.2,Ramírez-Huesca M.2,Pérez-Lozano M.L.2,Cirugeda A.1,Bajo M.A.3,Del Peso G.3,Valenzuela-Fernández A.2,Sánchez-Tomero J.A.1,López-Cabrera M.2,Selgas R.3

Affiliation:

1. Servicio de Nefrología, Hospital Universitario La Paz, Madrid - Spain

2. Unidad de Biología Molecular, Hospital Universitario La Paz, Madrid - Spain

3. Hospital Universitario de la Princesa, Madrid and Servicio de Nefrología, Hospital Universitario La Paz, Madrid - Spain

Abstract

The preservation of the peritoneal membrane is crucial for long-term survival in peritoneal dialysis. Epithelial-to-mesenchymal transition (EMT) is a process demonstrated in mesothelial cells (MC), responsible for negative peritoneal changes and directly related to PD. EMT enables neovascularization and fibrogenic capabilities in MC. Vascular endothelial growth factor (VEGF) is the mediator for neo-vascularization. Rapamycin is a potent immunosuppressor with antifibrotic action in renal allografts and has a demonstrated anti-VEGF effect. We performed this study with the hypothesis that rapamycin may regulate the EMT of MC. MC from human omentum were cultured. When mesothelial cells reached confluence, some of them were stimulated with r-TGF-ß (1 ng/mL) to induce EMT, co-administered with rapamycin (0.2, 2, 4, 20 and 40 nM). Other groups of cells received similar doses of rapamycin or r-TGF-ß, separately. Cells were analyzed at 6, 24, 48 hours and 7 days. As markers of EMT we included α-SMA, E-cadherin and snail nuclear factor by quantitative RT-PCR. EMT markers and regulators demonstrated the following changes with rapamycin: E-cadherin (a protective gene for EMT) increased 2.5-fold relative to controls under 40 nM, at 24h. Importantly, rapamycin inhibited snail expression induced by TGF-ß at 6h, whereas TGF-ß increased snail 10fold. At day 7, rapamycin showed no anti-EMT properties. An important decrease in α-SMA expression by MC after rapamycin addition was observed. In conclusion, rapamycin shows a mild protective effect on EMT, as it increases E-cadherin and decreases α-SMA expression. Consequently, rapamycin might partially regulate the epithelial-to-mesenchymal transition of mesothelial cells.

Publisher

SAGE Publications

Subject

Biomedical Engineering,Biomaterials,General Medicine,Medicine (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3