Comparing Trunk Kinematics Computed by Optical Marker-Based Motion Capture System and Inertial Measurement Units During Overground Trips

Author:

Lee Youngjae1ORCID,Alexander Neil B.2,Franck Christopher T.3,Madigan Michael L.1

Affiliation:

1. Grado Department of Industrial and Systems Engineering, Virginia Tech, Blacksburg, VA, USA

2. Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA

3. Department of Statistics, Virginia Tech, Blacksburg, VA, USA

Abstract

Falls are the most common cause of non-fatal injuries, and trips are responsible for high percentages of those falls in the United States. Traditional method for estimating trunk kinematics during overground trips uses optical marker-based motion capture systems. However, their cost and space requirements can often be barriers in this research field. Inexpensive and portable inertial measurement units may be an appropriate alternative. This study compared trunk flexion angle and angular velocity at touchdown of the initial recovery step after laboratory-induced trips while walking captured by the optical markerbased motion capture system versus IMUs. Our results provide evidence that a sternum-worn IMU can provide trunk kinematic measurements of clinical relevance and may be used to provide meaningful data to understand kinematic responses to trips or trip-induced falls that occur in real life.

Publisher

SAGE Publications

Subject

General Medicine,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3